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Abstract—Object detection is one of the most fundamental yet
challenging research topics in the domain of computer vision.
Recently, the study on this topic in aerial images has made tremen-
dous progress. However, complex background and worse imaging
quality are obvious problems in aerial object detection. Most state-
of-the-art approaches tend to develop elaborate attention mecha-
nisms for the space-time feature calibrations with arduous com-
putational complexity, while surprisingly ignoring the importance
of feature calibrations in channel-wise. In this work, we propose a
simple yet effective calibrated-guidance (CG) scheme to enhance
channel communications in a feature transformer fashion, which
can adaptively determine the calibration weights for each channel
based on the global feature affinity correlations. Specifically, for a
given set of feature maps, CG first computes the feature similarity
between each channel and the remaining channels as the inter-
mediary calibration guidance. Then, rerepresenting each channel
by aggregating all the channels weighted together via the guidance
operation. Our CG is a general module that can be plugged into any
deep neural networks, which is named as CG-Net. To demonstrate
its effectiveness and efficiency, extensive experiments are carried
out on both oriented object detection task and horizontal object
detection task in aerial images. Experimental results on two chal-
lenging benchmarks (i.e., DOTA and HRSC2016) demonstrate that
our CG-Net can achieve the new state-of-the-art performance in
accuracy with a fair computational overhead. The source code has
been open sourced at https://github.com/WeiZongqi/CG-Net.

Index Terms—Aerial image, attention learning, calibrated-
guidance (CG), deep learning, object detection.
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I. INTRODUCTION

OBJECT detection in aerial images is one of the most
fundamental yet challenging research tasks, which aims

to assign a bounding box with a unique semantic category label
to each surficial object in the given aerial images [1]–[5]. This
task is critical for a wide range of downstream tasks, e.g., land re-
source management, ecological monitoring, and land ecosystem
evaluation [6], [7]. Thanks to the recent promising development
of deep convolutional neural networks (CNNs) in image process-
ing, object detection in aerial images has also made tremendous
progress. The state-of-the-art approaches are usually based on
a one-stage detector (e.g., RetinaNet [8] and YOLO [9]) or a
two-stage detector (e.g., fast/faster R-CNN [10], [11]) with a
CNN as the backbone. Compared to objects in general natural
scenes, objects in aerial images usually have smaller size, higher
density, objects with different size, worse imaging quality, and
more complex background [14], [15]. Therefore, it is difficult to
directly achieve a satisfying recognition performance in aerial
images using the existing natural-scene object detectors. To
this end, state-of-the-art methods focus on developing effective
head networks [1], adaptive dense anchor generators [2], and
labeling strategy [3], [5]. Besides, effective feature learning
strategies play a crucial role. Because such methods can provide
generalized features to improve the model performance. To
this end, a large amount of feature calibration methods based
on the attention mechanisms have been proposed to improve
the rough feature representations in CNNs [4], [6], [16]–[19].
Conceptually, these attention-based methods can be basically
divided into two categories: 1) the spatial-attention-based one,
and 2) the channel-attention-based one. For the first category
(e.g., spatial attention module [17], [19], [20], recurrent atten-
tion structure [6], selfattention mechanism [21], and nonlocal
operation [22]), as shown in Fig. 1(a), a global context mapping
for each feature position can be obtained by computing the
similarities between the feature of each specific position and
all the remaining feature positions [23], [24]. Through such
an operation, each pixel can obtain the long-range dependence
information of the input image. For the second category (e.g.,
channel attention module [20], and the channel-wise attention
(CA) [17], [25], and the squeeze-and-excitation block [4], [16],
[26]), as shown in Fig. 1(b), each channel can obtain a weight
that reflects its own importance in object detection, and then
integrate the weight into the model by the channel reweighting
manner.
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Fig. 1. Illustrations of the attention-based feature calibration methods.
(a) Spatial attention mechanism. (b) Channel attention mechanism. (c) Our
proposed calibrated-guidance (CG).

Despite the success of the existing attention-based methods in
calibrating features for object detection, we argue that most of
these methods on feature calibrations in channels are not enough.
That is to say, they cannot introduce channel communications to
capture the dependencies between channel feature maps, which
have empirically shown their benefits to a wide range of com-
puter visual recognition tasks [27]–[32]. Although the existing
channel-attention-based methods can enable different channels
to obtain different weights, modules (e.g., global average/max
pooling) based on their channel feature maps cannot guarantee
all the channels have sufficient communications. Therefore,
from this point of view, these methods are still local-based.

To address those problem, including different size objects
and complex background in aerial images and limitations of
existing attention-based methods in calibrating features, in this
article, we propose a simple yet effective CG scheme to enhance
channel communications in a feature transformer fashion, which
can adaptively determine the calibration weights for each feature
channel based on the global feature affinity-pairs. CG is an active
feature communication mechanism, as shown in Fig. 1(c), which
can explicitly introduce feature dependencies in a channel-wise
manner. Specifically, CG is applied to the pyramid features, in-
cluding the inner and interlayers of the pyramid, and the pyramid
layer features are also regarded as the “channel” of overall pyra-
mid features. CG consists of two steps: first, feature similarities
(via the dot-product operation) between each channel and the
remaining channels are computed as the intermediary calibration
guidance. Then, we represent each channel by aggregating all
the channels weighted together via the guidance. The weighted
feature maps has the same spatial size as the input feature maps,
but contain richer information about the long-range channel
dependency information. For typical problems of aerial images,
within and between pyramid layers, we propose base CG and
rearrange pyramid CG to realize calibrating features locally and
globally.

CG is a general unit that can be plugged into any deep
neural network. We name a CNN model deployed the pro-
posed CG module as CG-Net. The overall architecture is shown

in Fig. 2. To demonstrate its effectiveness and efficiency, we
conduct extensive experiments on both oriented object de-
tection task and horizontal object detection task. Experimen-
tal results on the challenging benchmarks object detection in
aerial images (DOTA) [14] and high resolution ship collections
(HRSC2016) [33] for oriented object detection show that our
proposed CG-Net can boost substantial improvements compared
to the baseline methods and achieves the state-of-the-art perfor-
mance in accuracy (i.e., 77.89% and 90.58% mAP, respectively)
with a fair computational overhead. Besides, experimental re-
sults on DOTA [14] for horizontal object detection also validate
the flexibility and effectiveness of the proposed CG-Net, which
also achieves the new state-of-the-art performance with the
accuracy by 78.26% mAP.

In summary, our main contributions are two-fold.
1) A simple yet effective CG scheme is proposed to enhance

channel communications in a feature transformer fashion,
and implements within and between feature pyramid lay-
ers to enhance pyramid representation.

2) We propose a CG-Net, which can achieve the state-of-the-
art oriented and horizontal object detection performance
on two challenging benchmarks for aerial images, includ-
ing DOTA and HRSC2016.

II. RELATED WORK

A. Object Detection in Aerial Images.

The purpose of object detection in aerial images is to locate
objects of interest on the ground and recognize their categories
by a bounding box [15], [34]. Each bounding box not only
contains the object coordinate information, but also contains
the category information. Object detection in aerial images can
be divided into horizontal-based ones and oriented-based ones.
Horizontal object detection aims to detect objects with horizon-
tal bounding boxes [8], [9], [11], [35]. Being observed from an
overhead perspective, the objects in aerial images present more
diversified orientations. Oriented object detection [1]–[5], [36]–
[44] is an extension of horizontal object detection to accurately
outline the objects, especially those with large aspect ratios.

Based on horizontal object detection, rotating boxes are im-
portant learning parts in oriented object detection. There are
many methods on how to rotate boxes. CSL [3] design a detection
frame by transforming angular prediction form a regression to
a classification task. Gliding vertex [38] glides the vertex of the
horizontal bounding box (regressing four length ratios character-
izing the relative gliding offset on each corresponding side) on
each corresponding side to accurately describe a multioriented
object. Ming et al. [2] proposed a dynamic anchor learning
method, which utilizes the newly defined matching degree to
comprehensively evaluate the localization potential of the an-
chors. Ding et al. [1] proposed an ROI transformer to address the
mismatches between the region of interests (RoIs) and objects
on training. Ming et al. [40] proposed a critical feature capturing
network to address problems of discriminative features in object
detection in refining preset anchors, building powerful feature
representation and optimizing label assignment. R-RPN [44]
overcomes the limitation of ROI pooling when extracting ships
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Fig. 2. Overall architecture of our proposed CG network (CG-Net), where CG is deployed on both the intralayer feature maps and the feature pyramid (i.e., the
standard feature pyramid network [12]). In comparison, feature map with CG module has a stronger representation ability. After that, we use a task-specific head
network for dealing with both oriented and horizontal object detection tasks in aerial images. ResNet [13] is used as the backbone network.

features with various aspect ratios. For fast and accurate ori-
ented object detection, R3 Det [42] and O2-DNet [43] make
attempts in one-stage model with RetinaNet and anchor free
structures. Based on R3 Det, R3 Det-DCL [5] designs densely
coded labels (DCL) for angle classification, which replaces
the sparsely coded label (SCL) in classification-based detectors
before, and reduces three times training speed, further bringing
notable improvements in accuracy of detection tasks. What
is more, for oriented object detection, SCRDet [4] combines
pixel and channel attention network for small and cluttered
objects. DEA [45] leverages a sample discriminator to realize
interactive sample screening between an anchor-based unit and
an anchor-free unit to generate eligible samples in aerial images
detection.

From the presentation form of bounding boxes, oriented ob-
ject detection can be more suitable for aerial object detection,
because it contains the orientation information of objects with
more accurate bounding-box. In this work, we consider both
oriented and horizontal aerial object detection tasks and develop
a pipeline line to benefit both of them.

B. Feature Calibration Over Images

The purpose of feature calibration is to refine feature maps
through the existing information, so as to further improve the

representation ability. Currently, most of the state-of-the-art
methods are designed from the perspective of feature calibration
to deal with the challenges of complex background and noise in
object detection [17], [19], [20], [22], [26]. Among those meth-
ods, attention-based ones are proposed to calibrate features from
two aspects, including spatial-attention and channel-attention-
based.

Spatial-attention-based mechanisms capture object positions
in the spatial dimension. Position attention module [20]/nonlocal
operation [22] build rich contexts on local features by using a
selfattention mechanism. Transformer [46] is the first sequence
transduction model combined with multiheaded selfattention.
DETR [21] is proposed to explore the relationship between
objects in the global context, which is of precision similar to
those of the two-stage detectors, but has a weakness on detecting
large objects with high computational overheads [47], [48]. In
aerial image analysis, ARCNet [6] utilizes a recurrent attention
structure to squeeze high-level semantic features for learning
to reduce parameters. Channel-attention-based mechanisms al-
locate resources for channels referring to their importance.
SENet [26] utilizes a squeeze-and-excitation block to imple-
ment dynamic channel-wise feature recalibration. For obtaining
better feature representations, DANet [20] utilizes a channel
attention module to capture contextual relationships based on
the selfattention mechanism. In aerial image, a residual-based
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network combining channel attention [16] is used to learn the
most relevant high-frequency features.

There are also some works that combine spatial attention
with CA together, e.g., SCA-CNN [25] and DONet [49]. These
methods take advantage of both CA and spatial-wise attention.
Besides, to address considerable interference of complex back-
ground in aerial detection, multiscale spatial and CA mecha-
nisms [17] are proposed to strengthen the object region in aerial
detection task. Despite the success of the existing attention-
based methods, they are not sufficient for feature calibration
in channels. In this work, we propose a simple yet effective
CG scheme to enhance channel communications in a feature
transformer fashion, which can adaptively determine the cali-
bration weights for each channel based on the global feature
affinity-pairs.

III. METHODOLOGY

In this section, we show the technical details of our proposed
CG-Net for object detection in aerial images. Specifically, we
first revisit the channel attention mechanism on images in Sec-
tion III-A. Then, our proposed CG module, which can enhance
channel communications, is described in Section III-B. After
that, we introduce how to implement CG on the base CNNs’
feature maps (i.e., base CG) and on an intranetwork feature
pyramid (i.e., rearranged pyramid CG) for object detection in
aerial images in Sections III-C and III-D. Finally, we show the
details of the network architecture in Section III-E.

A. Channel Attention Revisited

CA module utilizes the interdependencies between the chan-
nels to emphasize the important ones by weighting the similarity
matrix. To be specific, CA operates on queries (Q), keys (K),
and values (V) among a set of single-scale feature maps X, and
the improved version X′ has the same scale as the original X.
For a given set of feature maps X ∈ RW×H×C , where W , H ,
and C are width, height, and channel dimension, respectively,
CA implementation can be formulated as

Input : qi,kj ,vj

Similarity : si,j = Fsim(qi,kj)

Weight : wi,j = Fnom(si,j)

Output : X′
i =

∑
j

Fmul(wi,j ,vj) (1)

where qi = fq(Xi) ∈ Q is the ith query; kj = fk(Xj) ∈ K
and vj = fv(Xj) ∈ V are the jth key/value pair; fq(·), fk(·),
and fv(·) denote the query/key/value channel transformer func-
tions [21], [46], respectively; Xi and Xj denote the ith and
jth channel feature in X; Fsim is the dot product similarity
function; Fnom is the softmax normalization function; Fmul de-
notes matrix dot multiplication; X′

i is the ith channel feature
in the transformed feature map X′, and the response of ith
channel feature is computed by jth ones that enumerates all
possible channels. Although CA can enable different channels
to obtain different weights, the coarse operation based on the

entire channel feature maps (i.e., without the grouped feature
representations [27], [31], [32], [46]) cannot enable all the
channels to have sufficient communications, which has been
empirically shown its importance in a large range of computer
vision tasks. As a result, the ability to feature representation is
limited.

B. Calibrated-Guidance (CG)

We propose CG to enhance feature channel communications
in a feature transformer fashion, which can adaptively determine
the calibration weights for the channels based on the global
feature affinity-pairs. Its detailed structure is shown in Fig. 2. CG
is inspired by the transformer mechanism and the difference is
that we combine the multihead representations, and concatenate
the original feature maps and the calibrated features, then use
a convolution layer to produce the enhanced feature maps as
output.

We deploy the multihead architecture to focus on richer
channel feature representations. Multihead in ViT [50] and
DETR [21] can provide more feature selection when extracting
features. Multihead structure complements features by learning
different contents, which is more sufficient than one head. Anal-
ysis work [51] finds that important ones in multihead have one or
more specialized and interpretable functions in the model, which
indirectly shows the necessity of adopting multihead structure.

First, we divide query and key into N parts in the
channel dimension. Then, we feed the divided feature with
shape (B,C/N,H,W ) into each head, where each structure is a
CG module (B is batch size). For nth head module, the shape of
similarity matrix sn is (B,C/N,C/N ), which can be expressed
as

sn =

⎡
⎢⎣
wnC/N,nC/N · · · w(n+1)C/N,0

...
. . .

...
w0,(n+1)C/N · · · w(n+1)C/N,(n+1)C/N

⎤
⎥⎦ (2)

where each w denotes the learnable similarity scalar. After that,
the outputs of these head modules (i.e., the partial result) are
concatenated together to produce the holistic output feature
maps, which have the same shape as the original feature maps.
The abovementioned process can be formulated as

Weight : wn
i,j = Fnom(s

n
i,j)

Partial esult : Xn
i =

∑
j

Fmul(w
n
i,j ,vj,n)

Holistic utput : X′ = Fcon(X
n
i ) (3)

where sni,j and wn
i,j denote the nth partial similarity weight of

the ith and jth channel features and the normalized one. The
ith channel feature is calculated by other channel features. vj,n

denotes the jth value of the nth head. Fcon is used for feature
concatenation in the channel dimension. Compared to the previ-
ous transformer-based approaches, the multihead CG has lower
computational complexity, O(NC2) both in time and space,
while the previous ones have the computational complexity
of O(NH2 W 2). Compared to CA, our proposed CG imple-
ments on pyramid features have the following three advantages.
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1) CG is designed for the enhancement of communications
within and between feature pyramid layers, while most of the
previous ones are used to capture the long-range dependencies
in space and channel within features. 2) CG is based on the
multihead structure, which has its unique tendency of feature
representation in different feature spaces [46], [52]. Hence,
CG can provide an enhanced feature representation. 3) CG is
designed for object detection in aerial images. By enhancing
feature pyramid representation, CG can solve complex back-
ground and worse imaging quality problems in aerial images,
then obtain a more accurate proposals in head network (see
Section IV-B). Experimental results (see Section IV-C) show that
CG can improve the state-of-the-art performance swimmingly
on both oriented and horizontal tasks. Two CG implements of
base CG and rearranged pyramid CG show, as follows.

C. Base CG

Given an arbitrary aerial image, we can extract a set of feature
maps by a fully convolution network. For these feature maps,
CG can directly achieve CG practice to enhance channel com-
munications and adaptively determine the calibration weight for
each channel. Its detailed architecture in a level of the feature
pyramid (i.e., feature maps with the same scale) is shown in
Fig. 2(b). Since this CG implementation is performed on the
basic feature maps, we call it base CG. Base CG is a general
unit, which works on the backbone network.

Compared to other existing head-network-based task-specific
methods [4], [53], it is more universal and can facilitate a wide
range of downstream recognition tasks. Our base CG improves
feature extraction, and the results can be seen from the ablation
experiments shown in Section IV-B.

D. Rearranged Pyramid CG

Feature pyramid has shown its effectiveness in a wide range
of computer vision tasks [8], [12], [54]. In this section, we
show how to implement our CG on a feature pyramid [i.e.,
the proposed rearranged pyramid CG (RP-CG)]. Compared
to the existing feature calibration methods on the in-network
feature pyramid [55]–[57], our RP-CG has lower computational
complexity and fewer model parameters (details are shown
in Section IV-A). The RP-CG module works on an extracted
feature pyramid from the feature pyramid network [12], whose
architecture is shown in Fig. 2(c).

From the perspective of levels inside the feature pyramid, each
level can be seen as local features, i.e., only part of the features
of the input image are captured. In order to emphasize the most
suitable feature in the channel dimension of the feature pyramid,
combining global and local information is crucial in feature
extraction. In our work, RP-CG focuses on weighting different
features among pyramid levels XP2−P6 following work [12],
[54]. As shown in Fig. 2(c), we apply CG between five levels of
the feature pyramid to fully communicate levels’ information. In
our implementation, first, we reduce the channel dimension and
launch interpolation on pyramid features XP2−P6 to generate
the same scale features (same scale as the largest one: P2) and

then concatenate them as XP2−P6, which is expressed as

XP2−P6 = Fintp(XP2−P6) (4)

where Fintp is a channel dimension reduction and scale in-
terpolation function. The shape of output feature XP2−P6 is
(B, 5, Hp2,Wp2). Then, same as base CG, RP-CG produces the
output X

′
i from input qi,kj , and vj by learning the weight

between the query and the key. The interaction is formulated as

Input : XP2−P6

Interpolation : XP2−P6

Extraction : qi,kj ,vj

Similarity : si,j = Fsim(qi,kj)

Weight : wi,j = Fnom(si,j)

Output : X
′
i =

∑
j

Fmul(wi,j ,vj)

Holistic utput : X
rpcg
P2−P6 = Fcon(X

′
i) (5)

where X
′
i is the ith level feature in transformed feature map

X
rpcg
P2−P6 with shape (B, 5, Hp2,Wp2). X

rpcg
P2−P6 realizes global

channel communication in pyramid features, but we need to find
the right way to feed back to pyramid features.

In addition, there have been multitudes of methods to ver-
ify the effectiveness of the combination of global and local
information in visual recognition, and our method is global in
essence. To this end, combining our RP-CG with the existing
local channel attention method is a natural choice. In this work,
the classical channel attention [26] is chosen. Based on this,
the overall structure of our proposed RP-CG module can be
expressed as

Weight : X
mean(rpcg)
P2−P6 = Fmean(X

rpcg
P2−P6)

Scale : X
′
P2−P6 = X

mean(rpcg)
P2−P6 ⊗XP2−P6

Output : X
final
P2−P6 = Fconv(X

′
P2−P6 ⊕XP2−P6). (6)

The output from XP2−P6 are divided into five parts (P2−
P6). X

rpcg
P2−P6 is the overall feature after we have weighted

XP2−P6. We use F(mean) to derive the weighting parameter to
distinguish different scales’ features, and it includes the oper-
ation of using the mean value as the weighting parameter for
each pyramid’s levels, which is then resized to the same scale of
the original level feature. ⊗ is matrix cross multiplication, and
⊕ is channel concatenation. X

′
P2−P6 is the calibrated feature

with the same size as the original feature pyramid. We get final

output X
final
P2−P6 from convolution Fconv, which is to reduce the

channel to the original size.

E. Network Architecture

CG can help the model learn richer communication infor-
mation between feature channels, so it is suitable for object
detection task in aerial images. In this article, we build a CG-Net
for both oriented and horizontal object detection tasks of aerial
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images. The overall architecture is shown in Fig. 2. CG-Net is
based on our proposed base CG [see Fig. 2(b)] and RP-CG
[see Fig. 2(c)] for transforming pyramid features. Specifically,
we deploy ResNet [13] as backbone following [1], which has
been pretrained on the ImageNet [58]. Then, we produce a
feature pyramid from the feature pyramid network [12]. For
this feature pyramid, we first apply base CG in the feature
maps from each level of the pyramid. After that, we deploy
the RP-CG to produce a new feature pyramid that realizes
global and local communication in the feature pyramid. Then,
we concatenate the original feature maps with the calibrated
ones together in the channel dimension and reduce the dimen-
sionality of the concatenated feature maps into 256 channels by a
3 × 3 convolution. Finally, we use the head network from the
RoI transformer [1] for oriented object detection and a standard
faster R-CNN [11] for horizontal object detection.

IV. EXPERIMENTS

To demonstrate the effectiveness and efficiency of our pro-
posed method, experiments are carried out on both oriented ob-
ject detection task and horizontal object detection tasks in aerial
images. In what follows, we first show experiments settings in-
cluding datasets, image size, baseline model, hyperparameters,
implementation details, and evaluation metrics in Section IV-A.
Then, we show some ablation results including some quantitative
and qualitative experimental results in Section IV-B. Finally,
we show result comparisons with state-of-the-art methods in
Section IV-C.

A. Experimental Setup

In our work, two challenging datasets are selected in exper-
iments, which are a large-scale dataset for DOTA dataset [14]
and HRSC2016 dataset [33]. DOTA is used for both oriented and
horizontal object detection. HRSC2016 is used for only oriented
object detection.

1) DOTA [14] is the largest aerial images datasets for object
detection and includes oriented and horizontal bounding
boxes. From different platforms and sensors, DOTA con-
tains 188 282 annotated instances in 2806 aerial images,
and have 15 common object categories, like plane (PL),
bridge (BR), baseball diamond (BD), ground track field
(GTF), large vehicle (LV), small vehicle (SV), ship (SH),
basketball court (BC), tennis court (TC), storage tank (ST),
roundabout (RA), soccer-ball field (SBF), harbor (HA),
swimming pool (SP), and helicopter (HC). Images range in
size between about800× 800 and4000× 4000pixels and
contain objects rendered in various scales, orientations,
and shapes. For dataset split, we follow the setting of
work [4], [14], and randomly select 1/2 of the original
images as the training set, 1/3 as the testing set, and 1/6
as the validation set.

2) HRSC2016 [33] is a ship detection dataset of aerial images
with challenging problems like arbitrary orientations and
large aspect ratios. HRSC contains 20 ship categories with
various appearances in 1061 images, collected from six
harbors by Google Earth. Images range in size between

about 300× 300 and 1500× 900 pixels. For dataset split,
we follow the setting of work [33], and the ratio of the
training, validation, and test sets is 5 : 2 : 5, respectively,
including 436 images, 181 images, and 444 images.

Due to inconsistent image sizes in the experimental datasets
and taking into account the training efficiency and effect for
DOTA and HRSC2016, we follow benchmark [1] setting and
generate a list of 1024× 1024 patches based on original images
using 824 stride for training, validation, and test sets.

Our baseline model is faster R-CNN [11], which is the stan-
dard two-stage detector in object detection and backbone utilizes
ResNet-101. We adopt FPN [12] as neck network to construct a
feature pyramid with predefined anchors on pyramid level P2–
P6. In oriented object detection, we utilize RoI-transformer [1]
as the rotated head network that transforms horizontal proposals
into rotated ones. For comparison fairly, all parameter and
experimental settings are strictly consistent as those reported
in [1], [14], and [33]. The entire network is trained by end-to-end
style without any extra rotation setting.

Although experience shows that the adjustment of hyper-
parameters is conducive to the further improvement of model
performance, it is necessary for the fairness of comparison. In
this article, following [1] and [2], for DOTA and HRSC2016,
anchor size is set to {82} with {1/2, 1, 2} aspect ratios
and {4, 8, 16, 32, 64} anchor strides of each pyramid level
in horizontal anchors. To compare fairly and verify the ef-
fectiveness of the proposed method, we conducted ablation
studies based on DOTA, and we avoid combining any other
data augmentation or bells-and-whistles training strategy. When
comparing with SOTA methods on DOTA and HRSC2016,
like [1], [2], and[4], we only add an augmentation with random
rotation from the angles of (0, 90, 180, 270). For multihead,
N can be seen as a hyperparameter used to divide channels
and set the number of multiheads in base CG. The dividing
feature can provide more feature selection for model learning,
and if N is large, it will weaken the communication abil-
ity among channel. Following parameter setting of previous
work [54] and parameter adjustment, we setN to two in our final
network.

In our work, the learning rate is 0.005 initially and conducts
0.0001 weight decay and 0.9 momentum in the SGD opti-
mizer. Training iterations are set to 80 and 20 k for DOTA and
HRSC2016 following [14] and [33]. In the testing step, we do
not use any testing augmentation, such as multiscale input or
TTA. Besides abovementioned, experiments are conducted on
two RTX2080Ti.

For evaluation, the results can be obtained from DOTA official
evaluation server1 by submitting predictions files. The mean
average precision (mAP) of each category and entire is used
to evaluate the model and analyze the result distribution follow-
ing [14]. What is more, GFLOPs/FPS and model parameters
(#Params) are adopted to verify efficiency in the model, which
is used to evaluate the computational complexity and runtime
efficiency of the model.

1[Online]. Available: https://captain-whu.github.io/DOTA/
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TABLE I
EFFECTIVENESS OF OUR PROPOSED METHODS WITH DIFFERENT BACKBONE

NETWORKS ON THE TEST SET OF DOTA [14] FOR ORIENTED

OBJECT DETECTION

Note: “+ Ours” indicates the implementation of our proposed base CG and
RP-CG units on the backbone networks.

TABLE II
EFFECTIVENESS OF MULTIHEAD STRUCTURE ON THE TEST SET OF DOTA [14]

FOR ORIENTED OBJECT DETECTION

Note: “CG” indicates the implementation of our proposed CG units on the backbone
networks. “Multihead” means combine multihead structure in CG blocks.

B. Ablation Study

Based on DOTA [14], we carry out ablations study for oriented
object detection in aerial images, which is aimed to:

1) verify the efficiency and effectiveness of different back-
bone networks combining our proposed methods;

2) verify the effectiveness of the two proposed units on base
CNN feature maps (i.e., base CG) and a feature pyramid
(i.e., RP-CG);

3) compare different attention structure with our proposed
methods;

4) explore the improvements of RPN input for aerial object
detection;

5) reveal mismatching error rates on different scales; and
6) show some visual comparisons.
The details are as follows.
a) Different Backbones: In Table I , the experimental results

show different backbone networks results on the test set of
DOTA, containing ResNet-50, ResNet-101, and ResNet-152.
We contrast GFLOPs/FPS/#Params/mAP and improvements
from the combination of our module. We can observe that
combining our units to the backbone can increase mAP by
0.95%, 1.24%, and 0.75%. Besides,#Params and GFLOPs/FPS
are reported for comparisons of model efficiency. Using base
CG and RP-CG increases computational costs; for example, it
brings an average of 1.80 M model #Params with around 155
GFLOPs increment, and with around 5–10 FPS reduction on
these three backbones. Considering the mAP and computational
complexity, ResNet-101 is selected as our backbone network in
experiments.

b) Proposed Units: In Table III, we show our proposed
units and their combined performance on ResNet-101. We can

Fig. 3. Radar chart for each category of object in DOTA [14] dataset. Different
colored lines represent different detectors. The larger areas enclosed by the outer
line, the better recognition performance of the corresponding method. The value
in this figure denotes the mAP.

observe that base CG and RP-CG, respectively, bring 0.58%
and 0.46% improvements for the bounding box mAP. The cor-
responding each-category mAP radar chart for oriented object
detection is in Fig. 3, to show the trend of the performance
change. Combining base CG and RP-CG together (i.e., our pro-
posed CG-Net), the model can increase mAP by at most 1.24%,
in which some categories have large improvements, such as BD
5.05%, SBF 3.14%, and RA 2.77%. These results indicate that
the feature presentation capabilities have been further improved
by base CG and RP-CG. As for the model efficiency, we can
observe that base CG and RP-CG, respectively, bring 0.59 and
0.61 M model #Params with 51.53 and 51.89 GFLOPs. When
these two models are deployed together, there is 1.79 M model
#Params and 154.95 GFLOPs increment. Our proposed CG is
based on selfattention and calculates the similarity matrix be-
tween features so that GFlops increases from 289.26 to 444.21.
In Table II, we compare the results of multihead in our CG
module and found that #Params reduce 0.36 M and mAP have
0.68% increment when adding multihead structure.

c) Different Attention Comparison: In Table III, we also show
different attention mechanism comparison results, including
nonlocal [22] in spatial dimension and squeeze-and-excitation
(SE) block from SENet [26] in channel dimension. In more
detail, we apply nonlocal and SE blocks in different levels
of the feature pyramid. We can observe that nonlocal and SE
block, respectively, bring 0.27% and 0.13% improvements for
the bounding box mAP and improve 0.43% mAP when com-
bined together. When we apply the attention module in feature
pyramid levels directly, improvements in mAP are less than our
proposed CG module, and nonlocal structure also has higher
computational complexity and model #Params. From the table,
we can observe that nonlocal brings 2.18 M model #Params
with 237.15 GFLOPs. SE block has little change in #Params
and GFLOPs but improvements are very limited compared to
the increase of mAP results from CG. When these two parts are
deployed together, there is a 0.43% mAP increment, less than
base CG 0.58% and RP-CG 0.46%.
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TABLE III
ABLATION STUDY AND DIFFERENT ATTENTION COMPARISON ON THE TEST SET OF DOTA [14] FOR ORIENTED OBJECT DETECTION

Note: ResNet-101 [13] is the backbone.

Fig. 4. Mismatching error rate comparison between the baseline and the
proposed method on DOTA [14] with ResNet-101 [13] for oriented object
detection. The lower the better.

d) Improving RPN Input for Aerial object Detection: CG-Net
shows significance when addressing complex background and
worse imaging quality problems. Aerial images have complex
geological structures, objects of different sizes, and object cat-
egories due to overhead shots from high altitudes, so they have
a more complex background. In aerial object detection, worse
imaging quality is detrimental to learning object features and
directly affects model training. Therefore, we implement CG on
pyramid features with base CG and rearrange pyramid CG. In
pyramid features, the size of proposals from the region proposal
network (RPN) [11] depends on the maximum response layer.
Therefore, whether object proposals are selected accurately will
affect the difficulty of the ROI module in training the detection
box, which requires more accurate pyramid features. CG-Net
can help the model learn richer communication information
within and between each layer of pyramid features. To sum up,
making CG operation for pyramid features is essential before
input into region proposal network.

e) Mismatching Error Rates on Different Scales: To reveal
the effect of the proposed method on each level of the feature
map, we define mismatching error rates on different scales in
the feature pyramid, i.e., the selected level of each object is
not consistent with the ground-truth level. It can be seen from
Fig. 4 that the mismatching error rate of each layer in the

feature pyramid has been reduced after deploying our proposed
method (i.e., the joint implementation of base CG and RP-CG).
Compared with the low-level feature in the feature pyramid that
is more suitable for small objects, the reduction of error rates
in high-level is obvious. For example, there are 0.1%, 0.2%,
0.1%, 0.7%, and 1.2% error rate reduction from level P2 to
P6. Therefore, the effectiveness of our method can be further
confirmed.

f) Visualized Samples: From results of ablation experiment
Table IV and Fig. 6, complex background and worse imaging
quality, showing like BD, GTF, PL, and RA, can be seen as
obvious problems. Specifically, when detecting boxes are used
to cover the whole objects, the boundary of boxes may show
certain fuzziness, such as class roundabout in Fig. 5 left line 2,
the problem of which is affected by complex background and
labeling for completely covering object in aerial data. In left
line 3, worse imaging quality leads to somewhat additional false
detection boxes in local areas.

C. Peer Comparisons

On DOTA. The experimental result on the test set of DOTA
is shown in Table IV. The each-category mAP radar chart for
oriented object detection is in Fig. 7 and for horizontal object
detection is in Fig. 8, to show the trend of the performance
change. CG-Net achieves the best score among all compared
methods, both on oriented object detection (77.89% mAP) and
horizontal object detection (78.26% mAP). Inside 15 categories,
CG-Net achieves great results for oriented object detection (six
rank top) and horizontal object detection (ten rank top). It is
worth noting that CG-Net utilizes a weaker backbone network
to surpass the state of the art by 0.52% mAP on oriented object
detection tasks (ResNet-152 vs ResNet-101) and brings 2.91%
mAP increment for horizontal object detection with the same
backbone. Compared to the approach (i.e., SCRDet [4]) with
the same backbone network (i.e., ResNet-101), our model has
improved mAP by 5.82%, which is quite remarkable in today’s
performance. Rotating boxes avoid excessive background and
clutter when calculating mAP compared with horizontal boxes
so the improvements using our method for rotating boxes task
are limited. While horizontal boxes contain more background,
the features processed by our CG suppress background and
highlight the object’s foreground features, so that mAP changes
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Fig. 5. Comparison to the baseline on DOTA [14] for oriented object detection with ResNet-101 [13]. The figures with blue boxes are the results of the baseline
and pink boxes are the results of our proposed CG-Net.

Fig. 6. Visualization results for oriented object detection on the test set of DOTA [14].
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TABLE IV
RESULT COMPARISONS WITH STATE-OF-THE-ART METHODS ON THE TEST SET OF DOTA [14] FOR BOTH ORIENTED AND HORIZONTAL OBJECT

DETECTION IN AERIAL IMAGES

Note: By “Ours” we mean that implementing base CG and RP-CG on the baseline model at the same time. “R-” in the backbone column denotes the ResNet [13], “D-” in the
backbone column denotes the DarkNet [9], and “H-” denotes the hourglass network [66].

TABLE V
RESULT COMPARISONS WITH STATE-OF-THE-ART METHODS ON THE TEST SET

OF HRSC2016 [33] FOR ORIENTED OBJECT DETECTION IN AERIAL IMAGES

Note: “R-” in the backbone column denotes the ResNet [13], and “V-” denotes
the VGG network [69]. mAP is obtained on the VOC 2007 evaluation metric.

Fig. 7. Radar chart for the state-of-the-art methods on DOTA [14] dataset for
oriented object detection. Different colored lines represent different detectors.
The larger areas enclosed by the outer line, the better recognition performance
of the corresponding method. The value in this figure denotes the mAP.

in horizontal boxes task are higher. Visualization results on the
test set of DOTA are shown in Fig. 6. We can clearly observe
that our model can achieve accurate recognition results.
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Fig. 8. Radar chart for the state-of-the-art methods on DOTA [14] dataset for
horizontal object detection. Different colored lines represent different detectors.
The larger areas enclosed by the outer line, the better recognition performance
of the corresponding method. The value in this figure denotes the mAP.

On HRSC2016: From Table V, result comparisons with peer
work on the test set of HRSC2016 [33] show that the perfor-
mance of our CG-Net surpasses the state-of-the-art methods
by 90.58% mAP, which increases 1.12% mAP on the previous
best model (R3 Det-DCL [5]). Compared with the existing
anchor strategy with large number and ratio, our CG-Net only
combines original anchors setting with {1/2, 1, 2} ratio when
training network, so it is worth noting how to utilize the pre-
setting anchors to select or strengthen high-quality feature is
reasonable and necessary considering efficiency and effective-
ness. In addition, we also believe that our model can achieve
further recognition performance with more complex aspect
ratios.

V. CONCLUSION

Complex background and worse imaging quality are obvious
problems in aerial object detection. Most approaches tend to
develop elaborate attention mechanisms for the space-time fea-
ture calibrations with arduous computational complexity. We
proposed a CG operation to enhance channel communications,
which can determine the calibration weights for each channel.
We implemented CG on the standard object detection back-
bone network with a feature pyramid network and we con-
ducted extensive experiments on both oriented and horizontal
object detection of aerial images. Experimental results on the
challenging benchmarks indicated that the proposed CG-Net
achieve state-of-the-art performance in accuracy with a fair
computational overhead. The each-category mAP radar chart for
oriented object detection and horizontal object detection showed
the robust trend of its performance. CG-Net surpassed the state
of the art for oriented object detection with a weaker backbone
network (ResNet-101 vs ResNet-152) and for horizontal object
detection with the same backbone. We will explore to apply
CG-Net to a broader range of natural scenes. Meanwhile, explor-
ing how to use CG-Net in other visual tasks such as semantic
segmentation and object reidentification is also an important
direction.
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